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Medium-sized rings are motifs found in natural products' and
regarded difficult structures to access in organic synthesis.” Through
the use of transition-metal catalysts, formation of medium-sized
rings has been achieved,® but developing enantioselective syntheses
remains a goal.* In light of this goal, Rh-catalyzed hydroacylation
appears an attractive approach because it is a mild, atom-
economical, and selective C—H bond functionalizing process.’
Indeed, a few variants of olefin hydroacylation produce seven- and
eight-membered rings.® Enantioselective variants to form cyclic
ketones larger than five-membered,” however, have yet to be
realized. Herein, we describe a Rh-catalyzed hydroacylation to form
medium-sized heterocyclic ketones, containing ether, sulfide, and
sulfoxide functional groups, with high regio- and enantioselectivity.

It occurred to us that medium-sized heterocycles could be
prepared by an enantioselective Rh-catalyzed hydroacylation of
alkenals 1, which are substrates bearing a functional group X
(Scheme 1). Inspired by previous reports,®® we expected coordina-
tion of X to Rh would help promote olefin hydroacylation over
competing pathways, such as olefin isomerization, aldehyde de-
carbonylation, and catalyst decomposition. Hydroacylation of 1
could produce o-substituted ketones 2 or S-substituted ketones 3;
the regioselectivity would depend on the catalyst choice and
substrate structure (i.e., X, tether length, and olefin substitution).

Scheme 1. Proposed Enantioselective Synthesis of Medium-Sized
Heterocyclic Ketones by Intramolecular Olefin Hydroacylation
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Initial experiments focused on finding an efficient Rh catalyst
for intramolecular hydroacylation of substrate 1a, which was readily
prepared from salicylaldehyde. We discovered that [Rh((R,R)-Me-
DuPHOS)]BF; catalyzed the cyclization of alkenal 1a to seven-
membered-ring ketone 2a in 88% yield with 15:1 selectivity over
its eight-membered-ring regioisomer.”’® Moreover, this a-substituted
ketone was produced in 98% enantiomeric excess (ee) (Table 1,
entry 1). With this catalyst in hand, we prepared and tested six
other aromatic aldehydes. Hydroacylation of both electron-deficient
(fluoro- and chloro-substituted) and electron-rich (methyl- and
methoxy-substituted) benzaldehydes produced corresponding seven-
membered-ring ketones in high yields (80—95%) and ee’s (96—98%)
(entries 2—5 and 7). Naphthaldehyde 1g underwent hydroacylation
to form polycyclic 2g in 86% yield and 98% ee (entry 8). At a
reduced loading of 2.5 mol %, [Rh((S,S)-BDPP)]BF, furnished 2e
in high yield (90%) but slightly lower enantioselectivity (94% ee)
than [Rh((R,R)-Me-DuPHOS)|BF; (entry 6).

Next, we focused on enantioselective hydroacylations with
thioether substrates and observed strong ligand effects (Table 2).
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Table 1. Enantioselective Synthesis of Medium-Sized Heterocyclic
Ketones via Oxygen-Assisted Hydroacylation®

e} 5 mol % (0] Me
u [Rh((R,R)-Me-DuPHOS)]BF,
R CH,Cl,, rt R (1)
O/\/\ o
1a-g 2a-g
entry substrate product % yield? % ee®
1 1a R=H 2a 88 98
2 1b R=5-F 2b 95 96
3 1c R=5-Cl 2c 91 97
4 1d R=5-Me 2d 89 98
5 1e R=5-OMe 2e 86 96
67 1e R=5-OMe 2e 90 94
7¢ 1f R=3-OMe 2f 8of 97

2, CLig
8¢ O H O 86 98

19 2g

“ Conditions: 5 mol % [Rh((R,R)-Me-DuPHOS)]BF,, CH,Cl,, room

temperature (rt), 1 day. ®Isolated yield of seven-membered-ring ketone.
"H NMR analysis of the crude reaction mixture showed a regioisomeric
ratio of >15:1. ¢ Determined by chiral HPLC or GC analysis. ¢ Using 2.5
mol % [Rh((S,S)-BDPP)]BF,.  Reaction time of 2 days. / Isolated yield
of both regioisomers (>20:1 selectivity).
With (R,R)-Me-DuPHOS, 4 cyclized to form the seven-membered-
ring compound 10 selectively in large ee (91% yield, 4:1 regiose-
lectivity, 95% ee; entry 1). With (S,S)-BDPP, however, substrate 4
underwent hydroacylation to preferentially form eight-membered-
ring heterocycle 11 (91% yield, >20:1 regioselectivity; entry 2).'¢
Examples of asymmetric hydroacylation of 1,2-disubstituted alkenes
are rare.”® However, by using (R)-DTBM-SEGPHOS as the ligand,
we found hydroacylation of both (E)- and (Z)-disubstituted alkenes
provided enantioenriched heterocycle 12 [89% yield, 97% ee (entry
3) and 97% yield, 93% ee (entry 4), respectively].'" With
1,1-disubstituted alkenes, the length of the tether between the olefin
and aldehyde determined the size of the medium ring formed. In
the presence of (R,R)-Me-DuPHOS, cyclization of allylic thioether
7 formed seven-membered ring 13, while cyclization of the
homoallylic substrate 8 afforded eight-membered ring 14. Notably,
hydroacylation of these 1,1-disubstituted alkenes produced 3-sub-
stituted ketones [85% yield, 99% ee (entry 5) and 86% yield, 93%
ee (entry 6), respectively].

Sulfoxides have not been studied as directing groups for
hydroacylation.'? Thus, we were pleased to find that sulfoxide (4)-9
underwent hydroacylation to generate trans-(+)-15 in 87% yield
with achiral dppp as the ligand (Table 2, entry 7). A single
diastereomer was observed by 'H and '>*C NMR spectroscopy, and
the molecular structure of this diastereomer was confirmed by X-ray
analysis. This unique transformation occurs with 1,4-induction of
chirality and highlights the potential of sulfoxides for stereoselective
hydroacylation.
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Table 2. Regio- and Enantioselective Formation of Medium Rings
via Sulfide and Sulfoxide Chelation®

entry substrate ligand product % yield® % ee®
0 Q Me
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S/\/\ s
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O o
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S S
4 1
o o Me
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H SEGPHOS
SW\Me s
3 5 (E)-olefin 12 89 97
4 6 (Z)-olefin 12 97 93
% o}
H (RR)-
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n s )
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6° 8 n=2 14 n=2 86 93
0 (0]
Me
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s+’\/§ g+
] 3
o 0
(+)-9 (+)-15, >20:1 dr

“ Conditions: 2.5 mol % [Rh(ligand)]BF,, CH,Cl,, rt, 1 day. ? Isolated
yields. € Determined by chiral HPLC or GC analysis. ¢ Combined yield
of 10 and 11 (4:1 selectivity). ¢5 mol % [Rh(ligand)|BF,. /Relative
stereochemistry determined by X-ray analysis (see the Supporting
Information for details).

Scheme 2. Proposed Mechanism and Deuterium Labeling Study:
Incorporation of Deuterium with No Scrambling
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Finally, we report preliminary studies that provide insight into
the mechanism of this asymmetric hydroacylation. In agreement
with our proposal, heteroatom coordination appears critical; subject-
ing an analogue of 4 (bearing carbon in place of sulfur) to our
standard conditions resulted in no observable hydroacylation
products. In addition, we performed an isotopic labeling experiment
to probe the turnover-limiting step. As shown in Scheme 2, we
envisioned that deuterium-labeled 4-D would undergo hydroacy-
lation by the well-established steps (C—D bond activation, olefin

insertion, and reductive elimination) to produce seven- and eight-
membered-ring regioisomers. In hydroacylation studies on different
classes of substrates,'*'* reductive elimination was implicated as
turnover-limiting. If reductive elimination were turnover-limiting
in our case, deuterium would be scrambled into the a-position of
11-D (see the Supporting Information for a full discussion).
However, we observed that products 10-D and 11-D had deuterium
at only the S-position, as drawn. Analogous results were obtained
using a deuterated analogue of la. This lack of deuterium
scrambling suggests that reductive elimination is not the turnover-
limiting step in our catalytic system.

In summary, we have developed a highly asymmetric Rh-
catalyzed synthesis of medium-sized heterocycles. Ether, sulfide,
and sulfoxide groups function as directing moieties, and both a-
and f-stereogenic centers can be produced. Further scope and
mechanistic studies are underway.
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